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Abstract
Recent years have seen a renaissance of conjoint survey designs within social science. To date, however,
researchers have lacked guidance on how many attributes they can include within conjoint profiles before
survey satisficing leads to unacceptable declines in response quality. This paper addresses that question
using pre-registered, two-stage experiments examining choices among hypothetical candidates for US
Senate or hotel rooms. In each experiment, we use the first stage to identify attributes which are perceived
to be uncorrelated with the attribute of interest, so that their effects are not masked by those of the core
attributes. In the second stage, we randomly assign respondents to conjoint designs with varying numbers
of those filler attributes. We report the results of these experiments implemented via Amazon’s
Mechanical Turk and Survey Sampling International. They demonstrate that our core quantities of interest
are generally stable, with relatively modest increases in survey satisficing when respondents face large
numbers of attributes.
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1. Introduction
In conjoint survey experiments, respondents are asked to evaluate hypothetical profiles comprised
of multiple attributes. Such designs allow researchers to evaluate trade-offs, and so have been used
to understand decision-making in fields including marketing (Green and Rao 1971), economics
(Adamowicz et al. 1998), and sociology (Jasso and Rossi 1977). In recent years, the increasing use
of computers to administer surveys has helped fuel an increase in conjoint experiments, especially
in political science (Hainmueller et al. 2014).1

Despite this newfound interest, researchers have paid little attention to questions about how to
optimally design conjoint surveys given well-known challenges in survey research. According to
studies on survey-taking, tasks that involve high levels of cognitive effort are more likely to induce
respondents to satisfice, meaning that they adapt by using cognitive shortcuts (Krosnick 1999).
Survey satisficing manifests itself in various behaviors that diminish response quality: satisficing
respondents are more likely to rush through surveys, ignore or skip instructions, choose response
options based on their placement, and use other effort-saving heuristics (Berinsky et al. 2014).
Conjoint experiments often present respondents with extensive information, making concerns
about satisficing particularly acute.

© The European Political Science Association 2019.

1See Franchino and Zucchini (2014); Abrajano et al. (2015); Carnes and Lupu (2015); Hainmueller and Hopkins (2015);
Bansak et al. (2016); Bechtel et al. (2016); Mummolo and Nall (2016); Wright et al. (2016); Horiuchi et al. (2018).
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Here, we draw on research on survey methodology to investigate a key question in designing
conjoint experiments: how many attributes can researchers include in a given profile before sur-
vey satisficing degrades response quality? Specifically, we conduct a series of survey experiments
to investigate the degree of satisficing when respondents are faced with varying numbers of attri-
butes. Due to what we term the masking-satisficing trade-off , researchers cannot always minimize
satisficing without potential side-effects. In typical applications of conjoint analysis, researchers
are interested in estimands that represent effects of attributes on conjoint responses, such as
the Average Marginal Component Effect (AMCE) (Hainmueller et al. 2014). Interpreting such
estimands requires care because of their dependence on the entire set of attributes included in
the experiment. For respondents, perceptions of one attribute are often linked to perceptions
of others. Without information on the full set of relevant attributes, estimates of an AMCE of
interest may be masking the effects of other, correlated attributes (see also Dafoe et al. 2018).

Because of concerns about masking and satisficing, researchers often face a binding trade-off
when designing conjoint experiments. If they include too few attributes, their quantities of inter-
est could mask the effects of other, omitted attributes. In that case, there is a likely gap between
the quantity of theoretical interest and the quantity researchers can estimate. But if researchers
include too many attributes, they may encourage survey respondents to develop time-saving
shortcuts that reduce the thoughtfulness of their responses. That, too, may lead the empirically
observable quantities to diverge from those of theoretical interest.

The relationship between masking and satisficing poses an empirical challenge as well. How
can we identify the change in satisficing across the varying number of attributes while holding
the degree of masking—and thus the underlying causal quantities estimated from the experi-
ments—constant? If we were to randomly assign respondents to different numbers of meaningful
attributes, we would risk conflating the effects of masking and satisficing, as any change in
response patterns could be a product of the number of attributes or the changed information pro-
vided by the additional attributes. To overcome this challenge, we develop a novel, two-stage
research design which enables us to isolate the effect of survey satisficing empirically, and we
deploy our pre-registered design in two substantive domains. Specifically, we consider how
American survey respondents—recruited via Amazon’s Mechanical Turk (MT) or Survey
Sampling International (SSI)—choose between hypothetical candidates for the US Senate
(Study 1) and hotel stay packages (Study 2).

In the studies’ first stages, we identify attributes which are unassociated with the core attributes
of interest by asking respondents to guess those attributes’ values conditional on the core attribute
values. For example, partisan affiliation is a core attribute of interest in study 1. Accordingly, we
first provide respondents with basic information about hypothetical candidates’ party affiliation
and other attributes of interest and then ask them to guess about several additional attributes,
such as the name of the candidate’s elementary school. By doing so, we can identify “filler attri-
butes” about which the core attributes provide no information—either for the full sample or for
various subsamples—and thus whose effects are unlikely to be masked by the effects of the core
attributes. In the second stage, we then randomly assign survey respondents to varying numbers
of filler attributes. By design, the core attributes of interest are not predictive of these filler attri-
butes, meaning that changes in the core attributes’ effects are primarily due to the increased cog-
nitive burden from the filler attributes.

Overall, our results demonstrate the robustness of conjoint experiments even for a large num-
ber of attributes, and so prove encouraging for their future use. There is a detectable but modest
decline in overall predictive power as the number of filler attributes increases, one that is slightly
more pronounced for SSI respondents. Even with as many as 35 filler attributes, respondents
recruited through MT and SSI provide meaningful responses, making steady use of core attributes
such as the candidate’s policy positions and views from the hotel room.

With these populations at least, conjoint designs are surprisingly robust to the inclusion of
many filler attributes. With respect to the number of attributes, the “breaking points” of conjoint
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survey experiments appear to be outside the range of current practice. Beyond conjoint designs
specifically, these results also speak to questions about the use of opt-in samples in survey
research as well as effort and attention in survey-taking generally (Yeager et al. 2011; Berinsky
et al. 2012; Mullinix et al. 2016), points to which we return in the conclusion.

2. Task difficulty and the masking-satisficing trade-off
Although conjoint experiments are a variant of survey research, researchers have yet to incorp-
orate insights from research on survey methodology (e.g. Sudman et al. 1996; Krosnick 1999;
Groves et al. 2011) when considering optimal conjoint designs. In this section, we explain the
masking-satisficing trade-off before developing expectations about how respondents are likely
to approach conjoint experiments given prior research on survey design.

The trade-off between masking and task difficulty presents a key challenge. An important
strength of conjoint designs is their capacity to include a variety of attributes simultaneously
so as to examine their relative importance. Including many attributes can also help to limit
the potential problem of masking (Hainmueller et al. 2014). The more attributes one includes
within a conjoint task, the less likely it is that responses to the attribute(s) of interest will be
partially driven by their perceived correlation with other, excluded attributes. Yet by including
large numbers of attributes, researchers also increase the difficulty of the task, and thus risk
inducing survey satisficing (Krosnick 1999). Our discussion below highlights this important
but under-scrutinized dilemma.

2.1. Masking

Masking can occur if people’s perceptions of an attribute of interest are correlated with their per-
ceptions about other attributes that are not included in the conjoint. For example, imagine that a
researcher is interested in the role of partisanship in explaining vote choice, and she/he employs a
fully randomized conjoint design that includes the party of the candidate as one attribute in the
conjoint table. Given the assumptions detailed in Hainmueller et al. (2014), she/he can recover a
valid causal estimate for the AMCE of party. Yet this AMCE is defined with respect to the other
attributes that appeared alongside partisanship, and so can change as those attributes do
(Hainmueller et al. 2014). For example, if voters use partisanship partly as a proxy for issue posi-
tions, the AMCE for partisanship is likely to be smaller when the conjoint tables include extensive
information about candidates’ issue positions.

More generally, masking occurs when respondents perceive a correlation between an included
attribute A and an excluded but influential attribute B. When B is excluded respondents may use
A as a proxy for B, but if B is included they might instead decide using B and render A irrelevant.
As a result, the AMCEs of A differ between designs where B is excluded or included.2 It is import-
ant to recognize that masking is distinct from omitted variable bias in that an estimate of an effect
might be masking another while remaining a valid causal estimate. In the presence of masking, it
is not that the researcher is getting an incorrect answer so much as she/he is asking a different
question. If B is omitted, researchers get a valid estimate of the AMCE of A defined as the causal
effect of A conditional on the design excluding B. If B is included, researchers still recover a valid
estimate of A’s AMCE, but that AMCE has a different meaning because it is now defined as the
causal effect of A conditional on the design including B. This variability in the AMCEs stems
from the conditional nature of these causal effects: the AMCEs are, by definition, functions of
the whole set of attributes included in the design as well as their joint assignment distribution
(Hainmueller et al. 2014). In online Supplementary Appendix A.1 we provide a formal definition
of masking.

2See also Dafoe et al. (2018) for an alternative formulation of a related phenomenon.
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2.2. The masking-satisficing trade-off

Researchers using conjoints therefore have to decide which AMCEs they are interested in and
choose the other included attributes accordingly. Now assume a set-up where a researcher has
one or multiple core attributes that they care about and the goal is to isolate the effects of
these core attributes from effects of other attributes that are potentially perceived to be associated
with the core attributes. In this set-up the researcher has an incentive to include a large number of
potentially associated attributes in the conjoint table to limit the possibility of masking.

To fix ideas, Figure 1 illustrates a sample conjoint task from Study 1. In it, respondents choose
between two hypothetical Senate candidates. Imagine the researcher is interested in isolating the
effect of party from other attributes that are perceived to be correlated with party. If voters place
considerable weight on candidates’ gay marriage stances, they may use partisanship to approxi-
mate those stances when they are absent. Accordingly, researchers can reduce masking by pro-
viding information about candidates’ issue positions. More generally, if the researcher’s goal
were simply to reduce masking without other constraints, she/he would provide full information
to respondents, and so recover the precise effect of interest. In general, we should expect masking
to decline as the number of attributes rises, with the extent of the decline depending on the per-
ceived correlations among attributes.

However, as more attributes are added to the conjoint table, the task becomes more difficult
for respondents. People can only hold so much information in working memory, and the upper
bound is thought to be around nine pieces of information (Miller 1994). To ask respondents to
process 20 pieces of information per candidate is likely to encourage them to adopt effort-saving
cognitive strategies that ignore some of the information and so degrade response quality
(Krosnick 1991; Mutz 2011). In other words, including too many attributes may induce excessive
survey satisficing, and so compromise the quality of survey responses. Note that excessive survey
satisficing can also change the estimated AMCEs. For example, we would expect the AMCE esti-
mates to be biased towards zero if survey satisficing means that some respondents no longer pay
attention to the attribute values. For a more formal discussion, see online Supplementary
Appendix A.1.

This fundamental tension is what we term the masking-satisficing trade-off: The goal to
reduce masking pulls researchers to include many attributes in the conjoint, while the goal to
reduce survey satisficing pulls researchers to include only a minimal number of attributes in
the conjoint. But despite the importance of the masking-satisficing trade-off for the design of
conjoint experiments, we know very little about just how severe this tradeoff is empirically. In
particular, we do not know whether this trade-off is binding given the number of attributes
researchers commonly employ. One reason for this is that it is difficult to examine the tradeoff
empirically because we need to have a design that allows us to distinguish changes in the AMCEs
that result from satisficing rather than masking. Below, we present a research design which
enables us to assess these trade-offs empirically.

3. Study design
Here, we use a novel, two-stage study design to investigate how many attributes one can include
in conjoint profiles without making respondents’ evaluations overly prone to satisficing. A major
challenge in doing so is the difficulty of distinguishing satisficing from other changes due to the
increased number of attributes. Indeed, the same problem that motivates our question—the
potential trade-off between masking and satisficing—also presents a problem to straightforward
research designs which might address it. Imagine that we are interested in the effect of candidates’
party alignments on support for those candidates. We might develop a list of attributes that are
likely to influence candidate choice and then randomly assign respondents to conjoint tasks with
varying numbers of attributes. Yet in such a design, respondents in different experimental
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conditions will differ in multiple ways: they see different numbers of attributes and have different
types of information. As a result, if the attribute of interest has a perceived correlation with the
marginal attribute, the AMCE could change due to masking rather than satisficing.

To isolate the effect of satisficing, we employ a two-stage research design. The goal of the first
stage is to identify attributes whose effects are known to not be masked by those of the attributes
of interest. Those “filler attributes” are then used in our second stage to identify the change in the
explanatory power of the main attributes as the overall number of attributes increases.

3.1. The first stage: validating filler attributes

The study design begins by choosing a set of “core” attributes of interest whose effects on
respondent preferences will be measured. In both studies, we designate four core attributes. As
described above, we investigate the extent to which adding “filler” attributes to the conjoint design
leads to satisficing and so changes the effects of the core attributes. To ensure that such a change
is the result of satisficing rather than masking, the study’s first stage identifies filler attributes that
have no perceived correlation with the core attributes.

Specifically, the first stage entails a survey experiment in which we ask respondents to guess
about prospective filler attributes based on the core attributes’ levels. If respondents are unable
to guess the values of a filler attribute based on the core attribute values, that indicates that
they do not perceive a meaningful association between the attributes. Since masking occurs
because of the perceived association between the attribute of interest and the omitted attribute,
the filler attributes that respondents do not perceive to be associated with any of the core attri-
butes are unlikely to cause masking and are therefore suitable for use in our second stage, in
which we vary the number of filler attributes. In Online Appendix A.1, we formalize the con-
ditions under which no masking would occur and discuss how our study design relates to

Figure 1. An example table from a typical conjoint experiment.

Political Science Research and Methods 57

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
01

9.
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2019.13


those conditions.3 Importantly, under our assumptions, filler attributes can have independent
effects on the outcome so long as they are not perceived to be associated with the core attri-
butes of interest.

The first-stage experiment proceeds as follows. We first present respondents with tasks like
that pictured in Figure 2. In each task, we present respondents with a profile comprised of ran-
domly selected values for the four core attributes. The order of the attributes is also randomized
and then fixed for each respondent. Given the attribute values in the profile, respondents are
asked to guess the values of other, unobserved attributes. In some cases, respondents might per-
ceive the unobserved attributes as correlated with the observed attributes: respondents who saw
a Democratic candidate might be more likely to guess that the candidate was a high school
teacher than a business owner. But in other cases, there is little reason to expect a correlation,
and the guesses should be unrelated to the profile attributes. For instance, whether a hypothet-
ical candidate supports or opposes same-sex marriage tells respondents nothing about which
19th-century president is her/his relative. If there is no perceived association, the potentially
irrelevant attribute cannot be masked by the attribute of interest. For a given, randomly gener-
ated profile, each respondent goes through all of the filler attributes in this manner in a rando-
mized order. The task is repeated several times for each respondent, with a new set of core
attribute levels in each task.

To evaluate the perceived association between each filler attribute and the core attributes—that
is, to assess whether the core attributes were predictive of respondents’ expectations regarding the
filler attributes—we employed a set of linear regressions. Specifically, each filler attribute was
subjected to all possible dichotomizations given its number of levels. For a two-level attribute,
only one dichotomization is possible, while for three- and four-level attributes, three and
seven dichotomizations are possible, respectively. For each dichotomization, the dichotomized
filler attribute was regressed on indicators for all four core attributes, resulting in a set of
difference-in-means estimates.4 Given the binary dependent variable specification, each
difference-in-means estimate corresponds to a change in probability. For each filler attribute,
we then evaluated the full set of difference-in-means estimates for all filler attribute dichotomiza-
tions and all core attribute indicator variables. Finally, we classified the attribute as “uncorrelated”
if none of the difference-in-means estimates for that attribute exceeded the threshold of 7 per-
centage points.5 Although this threshold is somewhat arbitrary, it does not undermine the
statistical validity of second-stage results since no data from the second stage was available
when making those decisions.6

We note that these tests focus on whether the core attributes are correlated with the
expected filler attributes on average. In Online Appendix A.6, we also conduct further (non-
prespecified) tests to examine the potential for heterogeneity across respondents in the per-
ceived associations that could give rise to more complex forms of masking. For example, we
examine whether there is heterogeneity in the predictive power of the core attributes regarding

3The effect of a core attribute A masks the effect of an omitted attribute B if (1) B is perceived to be associated with A and
(2) B has a non-zero effect on the conjoint response when included in the task along with A. Here, we focus on attributes that
do not satisfy the first condition, which is easier to test empirically. Most of our selected filler attributes in Study 1, however,
turn out to be also likely to violate the second condition; the selected filler attributes in Study 2 violate the first but do satisfy
the second condition. See Online Appendix A.1 for a more formal discussion.

4For core attributes with more than two levels, we also calculated pairwise differences between non-reference-level effects.
5We chose the 7-percentage-point threshold based on results from many simulation experiments as well as our subjective

judgment as to the substantive significance of the effect sizes. We initially set the threshold at 5 percentage points (as docu-
mented in our pre-analysis plans) but changed it to 7 percentage points after collecting data from the first stage experiments,
but before any portion of the second stage experiments was conducted.

6It should also be noted that our procedure does not take into account statistical uncertainty in the estimates, implying that
some fillers’ effects might be incorrectly classified as above or below the 7-percentage-point threshold. We are not particularly
concerned about this possibility because of the large sample used, and also because the statistical properties of second-stage
estimates do not themselves depend on the particular threshold chosen for the first-stage test, as discussed in the main text.
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the expected filler attributes across different types of respondents as stratified by party,
income, gender, or age. The results from these additional tests support the notion that the
uncorrelated filler attributes fail to meet the conditions required for their effects being masked
by the effects of the core attributes.7

3.2. The second stage: identifying satisficing due to task difficulty

In the second stage, respondents are presented with pairs of conjoint profiles—of hypothetical
political candidates in Study 1 and hypothetical hotel room packages in Study 2—and asked
to evaluate them. For instance, in Study 1, respondents are shown pairs of candidates for US
Senate and asked to choose their preferred candidate as well as rate each individual candidate.
In this second stage, our goal is to assess how respondents’ evaluations of the profiles change
as the profiles contain increasing numbers of attributes.

The results of the first stage allow us to identify uncorrelated filler attributes for use in the
second stage. With that identified pool of uncorrelated filler attributes, we randomly assign
respondents to different numbers of filler attributes so as to vary task difficulty. The four core
attributes are always included in the profiles and randomly interspersed with any filler attributes.
The example in Figure 3 illustrates the case where four fillers are included in Study 1.

As the number of filler attributes increases and the conjoint task becomes more demanding, do
respondents adapt by providing less thoughtful responses? Our expectation is that any increased
survey satisficing will induce respondents to pay less attention to the task, and so will attenuate

Figure 2. An example task from Study 1, first stage. Respondents are asked to guess at the value of a potential filler attri-
bute given the values of four attributes of interest.

7We leave the question of isolating satisficing under complex masking to future research.
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Figure 3. An example task from Study 1, second stage. Respondents are asked to assess two hypothetical candidates for
US Senate.
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the predictive power of the core attributes. We employ two measures of attributes’ predictive
power. First, we estimate the AMCEs of the core attributes and compare the estimates across
the different numbers of filler attributes. Since our filler attributes are unassociated with the
core attributes by design, adding any of those filler attributes should not change the AMCEs
of the core attributes due to masking. Instead, changes in the effects of the core attributes should
be the result of increased survey satisficing due to the increased number of attributes.

Second, we calculate the coefficient of determination (i.e. R2) from regressions of the conjoint
responses on the four core attributes,8 and compare those R2s across the experimental conditions.
Again, because the omission of unassociated filler attributes should not change the core attri-
butes’ AMCEs due to masking, and because R2 is a function of the regression-based estimates
of the AMCEs, changes in the R2 across the experimental conditions can be attributed to changes
in satisficing. Note that the population value of this R2 is equivalent to the partial coefficient of
determination (i.e. partial R2) for the core attributes from the “global” population regression of
conjoint responses on the full set of attributes when the core and filler attributes are independ-
ently randomized. This implies that the R2 can be interpreted as a summary measure of the
explanatory power of all the four core attributes combined, and its change as the overall variation
in satisficing due to the addition of filler attributes.

4. Results
We implement our two-stage design in studies of two separate domains. The first considers
choices among political candidates, as respondents are asked to choose between pairs of hypo-
thetical candidates and to rate each candidate. In political science, analyzing candidate choice
has been one of the most common uses of conjoint experiments (e.g. Loewen et al. 2012;
Franchino and Zucchini 2014; Hainmueller et al. 2014; Abrajano et al. 2015; Carlson 2015;
Carnes and Lupu 2015; Crowder-Meyer et al. 2015). The second study asks respondents to choose
between and rate hotel room packages. We choose this topic partly because it was used in a cele-
brated, early application of conjoint analysis (Goldberg et al. 1984).

Another key difference between Study 1 and 2 concerns the nature of the filler attributes. In
Study 1, we use filler attributes that are unlikely to have independent effects on respondents’ eva-
luations of political candidates (e.g. name of famous relative), meaning that they will not have any
informational value for respondents. In contrast, Study 2 uses filler attributes that are more
clearly meaningful and can plausibly drive responses in either a positive or negative direction
(e.g. material in bed pillows). While the Study 1 fillers merely introduce irrelevant information
that respondents must sift through, the Study 2 fillers add potentially meaningful information
that respondents must weigh. Our expectation is that the latter set of filler attributes will induce
more cognitive burden and lead to heightened satisficing. Specific procedures for both stages of
both studies, as well as plans for our statistical analysis, were pre-registered at the Political Science
Registered Studies Dataverse prior to launching the study.9

4.1. Study 1: political candidates

In Study 1, we investigate how the proliferation of irrelevant attributes affects the predictive power
of candidates’ core attributes. The core attributes for this study are candidates’ party affiliation
(Republican or Democratic), position on same-sex marriage (favor or oppose), position on health
care (government should do more or less), and age (42, 54 or 72). To assess prospective filler

8Specifically, we create dummy variables for all levels of each of the core attributes except for a reference level and regress
the outcome on all the dummies.

9Available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/WX5UXL and https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SDFYTU.
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attributes, we start with a list of candidate attributes that we expect to have no perceived correl-
ation with the core attributes and often no effect on overall evaluations. We also include a num-
ber of attributes that we do expect to have varying degrees of perceived association with the core
attributes to enable validity checks (e.g. ideology). The complete list of filler attributes is in
Table A.1 in Online Appendix A.2.

The first-stage survey experiment was administered to 2,489 respondents recruited through
MT on September 20, 2016. We chose MT because of its increasing popularity as a platform
for conjoint experiments in the social sciences as well as its fast turnaround. While MT respon-
dents are known to differ from population-based samples in important respects, they are an
accessible, attentive population that is frequently employed in experimental research (Berinsky
et al. 2012; Huff and Tingley 2014; Hauser and Schwarz 2015; Mullinix et al. 2016). For improved
external validity, we also replicate the second stage of the study with SSI, another popular popu-
lation for survey experiments. As detailed in Online Appendix A.2, our first-stage experiment
identified five of the 16 tested attributes as filler attributes that are perceived to be uncorrelated
with any of the core attributes.

In the second-stage experiments, respondents were shown pairs of candidates for US Senate
and asked to choose their preferred candidate as well as rate each individual candidate. We ran-
domly assign respondents to different numbers of filler attributes so as to vary task difficulty; the
four core attributes of interest are always included in the profiles and are randomly ordered. The
example in Figure 3 illustrates the case where four fillers are included.

We implemented this design using three MT surveys. The first took place on September 26,
2016, with 1,199 respondents; the second took place November 3 and 4 with 2,476 respondents;
and the third took place on November 21 with 422 respondents.10 In all three, after the respon-
dents answered several socio-demographic questions, they were asked to complete 15 conjoint
tasks. Critically, the waves differed in the number of filler attributes employed. The first stage-two
survey was conducted exactly as specified in our pre-analysis study plan: we randomly assigned
respondents to 0, 1, 2, 3, 4, or 5 previously validated filler attributes. After completing the first
wave and observing the results, which indicated surprising robustness even for 5 filler attributes,
we decided to administer additional waves with even larger numbers of fillers. The second MT
wave thus included treatment arms with 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, and 15 filler attributes.
The third wave included only three conditions: 5, 25, and 35 filler attributes. For these additional
waves, we also employed untested filler attributes which we had good reason to believe would be
perceived as unrelated to the core attributes. Online Supplementary Appendix A.3 presents the
full list of filler attributes. In the results below, we show estimates using all responses pooled
from the three waves. The results that only use responses from the first, pre-registered wave
are in Online Appendix A.3.

To quantify the extent of satisficing, we estimate the AMCEs corresponding to our four core
attributes for each treatment condition for the pooled MT experiments, as illustrated in
Figure 4 and Table A.3 in the Online Appendix. We limit the sample to those respondents
who expressed an identification with or leaning toward the major parties, and we transform
the party and issue-position measures such that they are indicators for concordance with
the respondent’s partisan affiliation. We focus here on the forced choice outcomes, although
the results for the candidate ratings are very similar (see Online Appendix A.3). Candidates’
partisanship proves to be a strong correlate of their choices: the AMCE associated with own-
party candidates is 0.198 (SE = 0.012) for those who saw no filler attributes, and it drops no
lower than 0.147 (SE = 0.016). In substantive terms, respondents are almost 20 percentage
points more likely to opt for a candidate who shares their partisanship, an estimate which
declines only slightly as the number of filler attributes grows.

10Note that any respondent who participated in multiple waves of our survey was removed from all but the first wave in
which she/he participated.
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The drops in the AMCE for sharing the candidate’s same-sex marriage position or health care
position are similar: they are discernible but modest, and never obscure the relationships of inter-
est. For instance, with zero filler attributes, the effect of a candidate’s position on same-sex mar-
riage is 0.228 (SE = 0.019), an estimate that declines to no lower than 0.190 (SE = 0.24).

Figure 4. The AMCEs for our core attributes of interest from the three MT survey waves as the number of filler attributes
increases.
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Candidates who are 72 years old are penalized, but this penalty is substantively smaller than the
effects of the other core attributes (−0.080, SE = 0.013 with no filler attributes), and it declines to
insignificance alongside 35 filler attributes.

To consider the joint predictive power of the core attributes as the number of filler attributes
rises, we calculate the partial R2 values from models in which we predict each of the forced
choices as a function of the core attribute levels associated with each candidate. Figure 5 illustrates
the results. Here, too, the results are consistent with a detectable but limited decrease in the core
attributes’ predictive power as they are scattered among increasing numbers of filler attributes.

Next, given concerns about the extensive experience MT respondents are likely to have with
surveys, we replicated our results with a survey of respondents available through SSI. These
respondents are also self-selected, but the volume of surveys in which they participate is markedly
lower on average. Our SSI survey included 2,786 respondents, and was administered between
November 30 and December 8, 2016. We randomized the respondents to 0, 2, 4, 6, 8, 10, 15,
25, or 35 filler attributes. All respondents were randomly assigned to a number of attributes
which then remained fixed throughout the survey. We pre-registered this portion of the study
as an addendum to the original pre-analysis plan before conducting any analyses.11

Figure 6 and Table A.4 in Online Appendix A.3 present the AMCEs for our core attributes.
The results are generally quite similar. We see detectable but typically modest declines for core
attributes. The effect of sharing the candidate’s party is 0.197 (SE = 0.015), a figure which
drops to a low of 0.146 (SE = 0.017) with 25 filler attributes. Sharing the candidate’s position
on same-sex marriage has an AMCE of 0.190 (SE = 0.021) when no filler attributes are present
and 0.122 (SE = 0.021) when there are 35. Similarly, sharing the candidate’s health care position
drops from 0.146 (SE = 0.020) to 0.090 (SE = 0.018) in the presence of 25 filler attributes.

Replicating the procedure above, we also estimated partial R2 values associated with models
including our core attributes but no filler attributes. Figure 7 illustrates the results. First, it

Figure 5. The partial R2 values for our core attributes with the forced-choice outcomes as function of the filler attributes,
fit to the MT data.

11Also available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/WX5UXL.
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demonstrates that the partial R2 values using the SSI data are consistently lower than those recov-
ered from the MT data. This pattern is consistent with MT respondents on average paying more
attention to the task, though it could also come from any difference in preferences between the
two groups of respondents. Despite this lower baseline, the trend is similar, with a detectable
decline in overall predictive power that is slightly more pronounced for cases where there are
large numbers of filler attributes. Overall, however, respondents provide meaningful responses
even with as many as 35 filler attributes, a number much larger than what is employed in virtually
all recent studies.

Figure 6. The AMCEs for our core attributes of interest from the SSI survey as the number of filler attributes increases.
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4.2. Study 2: hotel rooms

In Study 2, we employ a design similar to Study 1 but investigate respondents’ choice of hypo-
thetical hotel rooms. The core attributes are the view from the room (ocean or mountain view),
floor (top, club lounge, or gym and spa floor), bedroom furniture (1 king bed and 1 small couch
or 1 queen bed and 1 large couch), and type of in-room wireless internet (free standard or paid
high-bandwidth wireless).

Like in Study 1, we begin with a list of additional attributes that should have no perceived cor-
relation with the core attributes, so they can be used as second-stage fillers. Unlike in Study 1,
however, we choose attributes that are uncorrelated with the core attributes but likely to have
their own effects on respondents’ preferences. The goal behind this modification is to investigate
the impact of the increased cognitive burden due to the addition of meaningful information.
Studying preferences about hotel rooms facilities the identification of such meaningful but uncor-
related attributes; in the candidate choice example, most relevant attributes are likely to be per-
ceived as interrelated. As validity checks, we include two attributes that are likely to be associated
with some of the core attributes (sailboats or trees viewable from the hotel window, bedroom pil-
low size). Table A.8 in Online Appendix A.4 lists the full set of filler attributes.

We administered the first stage to 3,291 respondents recruited through MT on February 28–
March 2, 2017 (see Online Appendix A.4 for details). Using the same procedure as in Study 1,
we identified 18 of the 38 potential filler attributes as perceived to be uncorrelated with the core
attributes. In addition, we detected strong correlations between our validity-check fillers and the
core attributes, confirming that our respondents were paying attention. We then proceeded to
our second-stage experiment on March 6-7, 2017, again using MT respondents (N = 3,307). The
experiment followed the same format as the corresponding experiment from Study 1. We randomly
assigned respondents to 0, 1, 2, 3, 4, 5, 6, 8, 10, 14, or all of the 18 filler attributes. We then asked the
respondents to complete choice and rating tasks on 15 pairs of hotel room profiles, each consisting
of the four core attributes as well as a randomly chosen set of filler attributes.

Figure 8 shows the estimated AMCEs of our core attributes across the treatment conditions.
Again, we focus on the forced choice outcomes. The results for the rating outcomes are very

Figure 7. The partial R2 values for our core attributes with the forced-choice outcomes as function of the number of filler
attributes, fit to the SSI data.
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similar and presented in Figure A.13 in Online Appendix A.5.12 When the design includes no
filler attributes, almost all of our core attributes have a strong impact on respondents’ preferences.
The AMCE for an ocean view room is estimated at 0.175 (SE = 0.018), meaning that respondents
are more than 17 percentage points more likely to choose a room with an ocean view compared
to a mountain view room. Respondents also prefer rooms with a king bed and a small couch

Figure 8. The AMCEs for our core attributes of interest from the hotel survey as the number of filler attributes increases.

12The similarity between the results for the forced choice and rating outcomes suggests that the core attribute effect attenu-
ation we observe is unlikely driven by ceiling/floor effects.
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to rooms with a queen bed and a large couch (AMCE = 0.098, SE = 0.03). The type of in-room
internet is also important in respondents’ choices (AMCE =−0.303, SE = 0.015), implying
that respondents are on average 30 percentage points less likely to choose a room with paid
high-bandwidth internet compared to an otherwise identical room with free standard wireless.
In contrast, the floor of the room turns out to be almost irrelevant.

The core, impactful attributes remain substantively significant when we add filler attributes.
However, in contrast to Study 1 where we found a largely flat line across many filler conditions,
the results indicate noticeable declines in the effects of each of these attributes as the number of fillers
increases. For example, the estimated AMCE for an ocean view room drops to 0.141 (SE = 0.015)
when 6 randomly chosen fillers are included, and it further declines to 0.082 (SE = 0.014) when
the profile includes 18 fillers. It is nonetheless remarkable that the attribute retains nearly half of
its original effect; the estimate still implies an 8.2 percentage point increase for ocean-view rooms.
Likewise, the estimated AMCE of a king bed and a small couch decreases to 0.037 (SE = 0.012)
when the number of fillers is 18. For the wireless internet attribute, the AMCE is also estimated
to be slightly less than half of its original value (−0.131, SE = 0.014) with 18 fillers. Changes in
the partial R2 values for these core attributes, reported in Figure 9, confirm that the attributes retain
significant (but decreased) predictive power even after the inclusion of 18 fillers.

Conjoint tables that include as many as 22 attributes are rarely used in practice, and thus the
18-filler condition may not be a practical benchmark. Instead, conjoint studies, at least in the fields
of political science and public policy, rarely use more than ten attributes. Thus, it is useful to focus
on the comparison between the experimental conditions in which 0 and 6 fillers are included.
Moving from the former to the latter condition, the AMCEs each retain at least two-thirds of
their initial magnitude, a demonstration of substantial robustness given that this comparison
involves more than doubling the amount of meaningful information on the conjoint table.

Perhaps more importantly, the rate of attenuation of the AMCEs as additional fillers are added
is virtually uniform across all of the attributes, meaning that the relative magnitudes of the

Figure 9. The partial R2 values for our core attributes with the forced-choice outcomes from the hotel study, as a function
of the number of filler attributes.
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estimated AMCEs remains unchanged across conditions. Accordingly, the qualitative conclusions
one would draw about the relative effect sizes are invariant to the number of fillers included in the
design. This finding is particularly notable given that a major contribution of conjoint designs is
in allowing researchers to compare the relative magnitudes of effects across attributes.

5. Conclusion
There is an extensive body of research on how best to conduct phone surveys. It covers many
issues researchers are likely to face in implementing telephone surveys, from survey length to
question order. In recent years, the rapid growth of survey research conducted via computers
has enabled researchers to employ increasingly complex research designs at little added cost.
Yet, research on survey methods has to date been focused on the change in sampling frames
that has accompanied the shift toward online survey administration (e.g. Chang and Krosnick
2009; Yeager et al. 2011). For those administering surveys via computer, there is surprisingly little
guidance about the extent to which insights developed for phone and in-person surveys hold up
(but see Gooch and Vavreck 2015).

Conjoint experiments are one such design: they are easily implemented by computer, and so
have seen a renaissance within political science in the past few years. In this paper, we sought to
advance our understanding of response behavior in surveys administered by computer by probing
one breaking point of conjoint designs. Specifically, we considered how many attributes research-
ers can include per profile. To include too few attributes may risk masking, while including too
many may instead produce excessive satisficing.

Those who would assess this trade-off empirically face an empirical challenge. When changing
the number of attributes, we also change the information that respondents have, and so shift the
causal estimand. To isolate the effects of increased satisficing, this paper employs a set of pre-
registered experiments using a novel, two-stage design in which we first isolated several “filler
attributes” unrelated to the core attributes of interest. We then randomly assigned respondents
to conjoint profiles with varying numbers of filler attributes.

Our first study used this design to estimate the effects of irrelevant filler attributes on response
quality when respondents chose between hypothetical Senate candidates. Using such attributes,
we found a detectable but substantively limited decline in the predictive power of our core attri-
butes as the number of such filler attributes increased. Extraneous information does not on its
own induce excessive satisficing, even when the number of such irrelevant attributes grows larger
than the total number of attributes in most conjoint designs published recently.

Still, when researchers seek to include additional attributes, it is typically because those attri-
butes are likely to be meaningful for the choice at hand. In our first study, the attributes did not
have independent impacts on the outcome, making them atypical and limiting our capacity to
generalize. To address that concern, our second study turned to a domain in which it was possible
to identify attributes which had meaningful, independent effects on respondent choice without
being correlated with the core attributes of interest: hotel rooms. In that case, respondents saw
profiles which had many potentially meaningful attributes. Our second study thus allowed us
to examine satisficing in cases where respondents are potentially overwhelmed with meaningful
information. Yet here, too, our central finding was the robustness of conjoint designs, as even 18
meaningful attributes did not erase the effects of our core attributes.

Our results have important implications for researchers designing conjoint studies. First, our
results suggest that satisficing does not impose a serious binding constraint on the number of
attributes included in a conjoint design.13 Certainly, there is no single magic number of attributes
which promises to guard against excessive satisficing. However, the limits on the upper number of

13In a companion study, we investigate the extent to which increasing the number of choice tasks in a conjoint design
affects response quality, and we find similar robustness to satisficing on that dimension (Bansak et al. 2018).
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attributes that we considered in our studies were purposefully set at levels above conventional
practice. Even given this high number of filler attributes, the core attributes retained most of
their effect magnitudes. More importantly, the addition of filler attributes did not affect the rela-
tive sizes of the core attribute effects. In other words, while satisficing appears to result in some
attenuation, we do not find it to systematically alter the pattern of results, thereby ensuring that
the broad interpretation of the results would remain unchanged. This points to the robustness of
the conjoint design for investigating multidimensional preferences by comparing the relative
importance of many different attributes.

Second, these results also yield concrete recommendations for researchers. Specifically,
researchers should not allow concerns about satisficing to dictate their conjoint design decisions
in terms of the number of attributes, assuming that the number is kept within the limits inves-
tigated in the studies presented here. Instead, researchers should prioritize other criteria in mak-
ing their design choices. In particular, attribute selection and profile design choices should focus
on accounting for masking in a way that fits the theoretical questions of interest, and on achieving
the desired level of realism in the conjoint profiles.

We recognize that our studies were implemented using opt-in internet samples, which are
likely to be different from other samples of respondents who have less experience taking surveys
or face reduced incentives to pay attention. Yet the most commonly used samples for conjoint
surveys today are opt-in internet samples, making our results relevant for a broad set of research-
ers. In addition, we recognize that the difficulty of a conjoint survey also depends on its subject
matter. For example, evaluating two candidates for Senate is a familiar task, and is likely to be
easier than evaluating multidimensional choices in less common domains. Future work that
extends this research to less attentive populations and/or different subject matter domains
would be valuable.

Supplementary Materials. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2019.13
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