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Abstract

The R package Synth implements synthetic control methods for comparative case stud-
ies designed to estimate the causal effects of policy interventions and other events of in-
terest (Abadie and Gardeazabal 2003; Abadie, Diamond, and Hainmueller 2010). These
techniques are particularly well-suited to investigate events occurring at an aggregate
level (i.e., countries, cities, regions, etc.) and affecting a relatively small number of units.
Benefits and features of the Synth package are illustrated using data from Abadie and
Gardeazabal (2003), which examined the economic impact of the terrorist conflict in the
Basque Country.
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1. Introduction

Much of social science is concerned with causal questions about the effects of historical events
and policy interventions on aggregate units, such as cities, regions, and countries. A classic
method of answering such questions is the comparative case study, in which investigators
compare outcomes for the unit(s) affected by an event or intervention (the treated group)
to outcomes for one or more unaffected units (the control group). The rationale behind this
method is to use the control group’s outcome to approximate the outcome that would have
been observed for the treated group in the absence of treatment. Traditional comparative
case study methods leave the choice of control units to the analyst, prompting questions
about the arbitrariness of selection and the degree to which control units can credibly proxy
for treated units’ counterfactual outcomes. Synthetic control methods, introduced by Abadie
and Gardeazabal (2003) and Abadie et al. (2010), address these shortcomings by proposing
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a data-driven control-group selection procedure, a framework for assessing the suitability of
the chosen control group, and a means of producing quantitative inference.

Abadie and Gardeazabal (2003) and Abadie et al. (2010) define a synthetic control unit as
a weighted average of available control units that approximates the most relevant character-
istics of the treated unit prior to the treatment. Synthetic control methods make explicit
the relative contribution of each available control unit and the degree of similarity prior to
treatment between a treated unit and its synthetic counterpart. An attractive feature of the
synthetic control method is that it guards against extrapolation outside the convex hull of
the data because weights from all control units can be chosen to be positive and sum to one.
Abadie et al. (2010) motivate the synthetic control method with a model that generalizes the
difference-in-differences (fixed-effects) model commonly applied in the empirical social science
literature by allowing the effect of unobserved confounding characteristics to vary over time.

The aim of this paper is to present the Synth package which implements synthetic control
methods in R (R Development Core Team 2011) and is available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/package=Synth.1 The central function in
the package is synth(), which constructs the synthetic control unit by solving an optimization
problem to identify a set of weights that are assigned to potential control units. Another
important function is dataprep() which allows the user to easily organize the data in a
format needed to run synth(). Other functions such as synth.tables(), path.plot(), and
gaps.plot() produce tables and figures that summarize and illustrate the results. Our data
example is from Abadie and Gardeazabal (2003), which introduced synthetic control methods
to investigate the effects of the terrorist conflict in the Basque Country on the Basque economy
using other Spanish regions as potential control units.

The rest of the paper is organized as follows. Section 2 briefly reviews the synthetic control
method, restating the key elements of Abadie and Gardeazabal (2003) and Abadie et al.
(2010). In section 3 we demonstrate the use of the main functions and methods of Synth with
an example. Section 4 concludes by describing future extensions to the Synth package.

2. Synthetic Control Methods

Synthetic control methods involve the construction of synthetic control units as convex com-
binations of multiple control units. The weights that define the synthetic control unit are
chosen such that the synthetic control unit best approximates the relevant characteristics
of the treated unit during the pretreatment period. The post-intervention outcomes for the
synthetic control unit are then used to estimate the outcomes that would have been observed
for the treated unit in the absence of the intervention.

Abadie et al. (2010) provide a formal discussion of the theoretical properties of the synthetic
control method. In particular, they derive the synthetic control estimator using an economet-
ric model that generalizes the usual difference-in-differences (fixed-effects) model commonly
applied in the empirical literature. Here we focus on how the Synth package can be used
to implement the synthetic control method, and thus provide only a very brief review of the
material in Abadie and Gardeazabal (2003) and Abadie et al. (2010).

1Software implementations of the synthetic control method for other packages such as MATLAB (The
MathWorks, Inc. 2007) and Stata (StataCorp. 2007) are also available on the corresponding author’s website
at http://www.mit.edu/~jhainm/software.htm.

http://CRAN.R-project.org/package=Synth
http://www.mit.edu/~jhainm/software.htm
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Suppose that we observe units j = 1, ..., J + 1 for time periods t = 1, . . . , T . Without loss
of generality, we assume that only the first unit is exposed to the intervention so we have
J remaining control units that can contribute to the synthetic control.2 The set of control
units is termed the donor pool. In the context of comparative case studies units are usually
aggregate entities such as schools, regions, or countries, and the interventions or treatments
are events such as economic shocks, the passages of laws, etc. The intervention occurs at time
period T0 + 1 so that 1, 2, ..., T0 are the pre-intervention periods and T0 + 1, T0 + 2, ..., T are
the post-intervention periods.3

We define two potential outcomes: Y N
it refers to the outcome that would be observed for unit

i at time t if unit i is not exposed to the intervention, and Y I
it refers to the outcome that

would be observed if unit i is exposed to the intervention. Our goal is to estimate the effect
of the intervention on the outcome for the treated unit in the post-intervention period. This
effect is formally defined as the difference between the two potential outcomes α1t = Y I

1t−Y N
1t

for periods T0 + 1, T0 + 2, . . . , T . Notice that Y N
it is unobserved for the treated unit in the

post-intervention period. The goal of the synthetic control method is to construct a synthetic
control group that yields a reasonable estimate for this missing potential outcome.

Ideally, we would like to construct a synthetic control that resembles the treated unit in
all relevant pre-intervention characteristics. Formalizing this idea we define Ui as a (r × 1)
vector of observed covariates for each unit. These variables will commonly consist of a set of
predictors of the outcome variable.4 Moreover, we define a (T0× 1) vector K = (k1, . . . , kT0)′

that denotes some linear combination of pre-intervention outcomes: Ȳ K
i =

∑T0
s=1 ksYis. Linear

combinations of pre-intervention outcomes can be used to control for unobserved common
factors whose effects vary over time.5 The user can choose to include as many as M (linearly
independent) combinations of pre-intervention outcomes (with M ≤ T0) to control for such
unobserved common factors.6

To construct our synthetic control unit we define a (J×1) vector of weightsW = (w2, . . . , wJ+1)
′

such that wj ≥ 0 for j = 2, . . . , J + 1 and w2 + · · · + wJ+1 = 1. Each W then represents
one particular weighted average of control units and therefore one potential synthetic con-
trol unit. Abadie and Gardeazabal (2003) and Abadie et al. (2010) propose to chose the
weights W ∗ such that the resulting synthetic control unit best approximates the unit exposed
to the intervention with respect to the outcome predictors Ui and M linear combinations of
pre-intervention outcomes Ȳ K1

i , . . . , Ȳ KM
i . Formally, we select W ∗ = w∗2 + · · · + w∗J+1 such

that
∑J+1

j=2 w
∗
j Ȳ

K1
j = Ȳ K1

1 · · ·
∑J+1

j=2 w
∗
j Ȳ

KM
j = Ȳ KM

1 and
∑J+1

j=2 w
∗
jUj = U1 hold (or hold

approximately). Then

α̂1t = Y1t −
J+1∑
j=2

w∗jYjt

yields an estimator of α1t in periods T0+1, T0+2, . . . , T . A formal discussion of the properties

2In cases where there are multiple units exposed to the intervention the user can first aggregate the data
from the regions exposed to the intervention.

3For notational convenience and without loss of generality we assume that the treated unit is uninterruptedly
exposed to the intervention in the post-treatment period.

4The set of covariates is usually restricted to variables that are measured before the intervention occurs,
but the user could include post-intervention characteristics as long as they are unaffected by the intervention.

5See Abadie et al. (2010) for details.
6In the example of section III below, we use only one of such linear combinations of pre-intervention

outcomes: the average of the outcome variable for ten pre-intervention periods.
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of the synthetic control estimator is provided in Abadie et al. (2010).

In empirical applications it is often the case that there exists no sets of weights such that∑J+1
j=2 w

∗
j Ȳ

K1
j = Ȳ K1

1 · · ·
∑J+1

j=2 w
∗
j Ȳ

KM
j = Ȳ KM

1 and
∑J+1

j=2 w
∗
jUj = U1 hold exactly, because

the characteristics of the treated unit (U1, Ȳ
K
1 , . . . , Ȳ KM

1 ) are outside of the convex hull of

the characteristics of the control units {(U2, Ȳ
K1
2 , . . . , Ȳ KM

2 ), . . . , (UJ+1, Ȳ
K1
J+1, . . . , Ȳ

KM
J+1 )}. In

these cases the weights are chosen so that the identity conditions hold approximately. Due to
the transparency of the method, the user can easily check how similar a particular synthetic
control unit is to the treated unit.

To implement the synthetic control estimator numerically, we need to define a distance be-
tween the synthetic controls unit and the treated unit. To do that, we combine the charac-
teristics of the exposed unit in the (k × 1) matrix X1 = (U ′1, Ȳ

K1
1 , . . . , Ȳ KM

1 )′ and the values
of the same characteristics of the control units in the (k × J) matrix X0 with the j-th row
(U ′j , Ȳ

K1
j , . . . , Ȳ KM

j )′. Notice that k = r + M . To create the most similar synthetic control
unit, the synth() function chooses the vector W ∗ to minimize a distance, ‖X1 −X0W‖, be-
tween X1 and X0W , subject to the weight constraints. In particular, in the synth() function
we solve for a W ∗ that minimizes

‖X1 −X0W‖V =
√

(X1 −X0W )′V (X1 −X0W ) (1)

where V is defined as some (k × k) symmetric and positive semidefinite matrix. The V
matrix is introduced to allow different weights to the variables in X0 and X1 depending
on their predictive power on the outcome. An optimal choice of V assigns weights that
minimize the mean square error of the synthetic control estimator, that is the expectation of
(Y1 − Y0W ∗)′(Y1 − Y0W ∗).
The synth() function allows for flexibility in the choice of V . Sometimes the researcher has
a good subjective assessment of the predictive power of the variables in X1 and X0. In this
case the user could supply his own weights via the custom.V option. These weighs populate
the diagonal of the V matrix (with the non-diagonal elements equal to zero) and synth()

simply minimizes equation (1) conditional on the user supplied V .

Both Abadie and Gardeazabal (2003) and Abadie et al. (2010) propose a data-driven proce-
dure to choose V , which is implemented by default in synth() (if no custom.V is specified).
In this procedure a V ∗ is chosen among all positive definite and diagonal matrices such that
the mean squared prediction error (MSPE) of the outcome variable is minimized over some
set of pre-intervention periods.7 In other words, let Z1 be the (TP × 1) vector with the values
of the outcome variable for the treated unit for some set of the pre-intervention periods and
Z0 be the (TP × J) analogous matrix for the control units, where TP (1 ≤ TP ≤ T0) is the
number of pre-intervention periods over which the MSPE is minimized.8 Then V ∗ is chosen
to minimize

arg min
V ∈V

(Z1 − Z0W
∗(V ))′(Z1 − Z0W

∗(V )) (2)

7Other potential choices are also described in Abadie et al. (2010).
8Notice that the rows of Z1 and Z0 form subsets of the rows of Y1 and Y0 respectively, where Y1 refers to

the (T ×1) vector of values for the outcome variable for the treated unit and Y0 refers to the (T ×J) analogous
matrix for the control units. A natural choice is to set TP equal to T0 and thus chose V ∗ to minimize the
MSPE over the entire pre-intervention period, but often it will be sufficient to choose TP < T0 to achieve a
low MSPE over the entire pre-treatment period.
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where V is the set of all positive definite and diagonal matrices and the weights for the syn-
thetic control are given by W ∗. synth() solves a nested optimization problem that minimizes
equation (2), for W ∗(V ) given by equation (1).

Abadie et al. (2010) describe how synthetic control methods facilitate inferential techniques
akin to permutation tests that are well-suited to comparative case studies in which the number
of units in the comparison group and the number of periods in the sample are relatively
small. They propose inferential techniques for the synthetic control method that proceed by
conducting so-called placebo studies. The basic principle is to iteratively apply the synthetic
control method by randomly reassigning the intervention in time (i.e., pre-intervention dates)
or across units (i.e., to control units where the intervention did not occur) to produce a set of
placebo effects. Subsequently, we can compare the set of placebo effects to the effect that was
estimated for the time and unit where the intervention actually occurred. This comparison
is informative about the rarity of the magnitude of the treatment effect that was observed
for the exposed unit. We can assess whether the effect estimated by the synthetic control
method for the actual intervention is large relative to the effect estimated for a unit or date
chosen at random. By construction, this exercise produces exact inference regardless of the
number of available comparison units, time periods, and whether the data are individual or
aggregate. However, as described in more detail in Abadie et al. (2010), the quality of some
of the inferential exercises increases with the number of available comparison units.9 The
underlying idea of the placebo tests is thus akin to permutation inference (see, for example,
Lehmann (1997)), where a test statistic is iteratively computed under random permutations
of the assignment vector that determines whether a unit is in the treatment or the control
group.

In section III we illustrate the placebo test proposed in Abadie et al. (2010) applying the
synthetic control method to units that were not exposed to the treatment. Examples of
placebo studies using the longitudinal dimension of the data are found in Appendix B of
Abadie et al. (2010) and Bertrand, Duflo, and Mullainathan (2004).

3. Implementing Synth

We demonstrate the synthetic control method using data from Abadie and Gardeazabal
(2003), which studied the economic effects of conflict, using the terrorist conflict in the Basque
Country as a case study. Abadie and Gardeazabal (2003) used a combination of other Spanish
regions to construct a synthetic Basque Country resembling many relevant economic char-
acteristics of the Basque Country before the onset of political terrorism in the 1970s. The
basque data contains information from 1955–1997 on 17 Spanish regions (excluding the small
autonomous towns of Ceuta and Melilla on the coast of Africa), including per-capita GDP
(the outcome variable), as well as population density, sectoral production, investment, and
human capital (the predictor variables). Missing data are denoted by NA.

R> library("Synth")

R> data("basque")

9Notice that the attribute ‘exact’ refers to the fact that we can compute the exact probability of estimating
an effect as large as the one we estimate for the treated unit if we reassign the treatment at random across the
control units.
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This dataset is organized in standard (long) panel-data format, with variables extending
across the columns and the rows sorted first by region and then by time-period.10 A name
(character-string) and number is provided for each region.11 At least one of these two types
of unit-identifiers is required for Synth to implement the analysis below.

R> basque[85:89, 1:4]

regionno regionname year gdpcap

85 2 Andalucia 1996 5.995930

86 2 Andalucia 1997 6.300986

87 3 Aragon 1955 2.288775

88 3 Aragon 1956 2.445159

89 3 Aragon 1957 2.603399

In Abadie and Gardeazabal (2003) the 13 predictor variables, for each region, were:

� 1964–1969 averages for gross total investment/GDP (invest).

� 1964–1969 averages for the share of the working-age population that was illiterate
(school.illit), the share with up to primary school education (school.prim), the
with some high school (school.med), the share with high school (school.high), and
the share with more than high school (school.post.high).12

� 1961–1969 averages for six industrial-sector shares as a percentage of total production
(these variables are named with a sec. prefix).

� 1960–1969 averages for real GDP per-capita (gdpcap) measured in thousands of 1986
USD.

� 1969 population density measured in persons per square kilometer (popdens).

3.1. Using dataprep()

The first step is to reorganize the panel dataset into an appropriate format that is suitable
for the main estimator function synth(). At a minimum, synth() requires as inputs the four
data matrices X1, X0, Z1, and Z0 that are needed to construct a synthetic control unit. In our
example, these four data matrices are as follows: X1 is the (13 × 1) vector of Basque region
predictors and X0 is the (13 × 16) matrix of values of the same variables for the 16 control
regions.13 Z1 is a (10 × 1) vector and Z0 is a (10 × 16) matrix which contain the values for
the outcome variable for the Basque country and the control units for the 10 pre-intervention
periods over which we want to minimize the MSPE.

10The panel dataset does not have to be sorted in this standard form. If the time-periods are out of order
and/or units are interspersed down the rows, dataprep() works correctly just the same.

11The first unit in this dataset refers to the data aggregated for the whole country of Spain.
12Notice that in the basque data these highest educational attainment variables are provided as the total

number of people in each category (in thousands). They are transformed to percentage shares below.
13Note that all but one of these predictors is an average value over some range of the pre-treatment period

and the precise date-range varies across predictor variables.
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While the user can choose to provide preprocessed data matrices and load them into synth(),
our package provides a convenience function called dataprep() that the user can run first
to properly organize the data. We strongly recommend using dataprep(), because it al-
lows to conveniently extract and package all the necessary inputs for synth() in a sin-
gle list object that can be passed to synth() without further arguments. The list re-
turned by dataprep() is also used by other convenience functions such as synth.tables(),
path.plot(), and gaps.plot() to produce tables and figures that summarize and illustrate
the results. dataprep() also implements a number of checks that will alert the user to missing
data and inconsistencies in the extracted objects.

The code example below briefly illustrates the use of dataprep(). More examples and details
on data extraction are available in the dataprep() help file. To obtain X1 and X0 the user is
required to define the predictor variables as well as the operator (e.g., mean) and time-period
(e.g., 1964:1969) applied to these variables. The user must also specify the dependent variable
(e.g., gdpcap), the variable(s) identifying unit names (e.g., regionname) and/or numbers (e.g.,
regionno), the variable identifying time-periods (e.g., year), the treated unit (e.g., region
number 17 which is the Basque country), the control units (e.g., regions number c(2:16,18)),
the time-period over which to optimize (e.g., the pre-treatment period 1960:1969),14 and the
time-period over which outcome data should be plotted (usually before and after treatment,
e.g., 1955:1997).15

R> dataprep.out <- dataprep(

+ foo = basque,

+ predictors = c("school.illit", "school.prim", "school.med",

+ "school.high", "school.post.high", "invest"),

+ predictors.op = "mean",

+ time.predictors.prior = 1964:1969,

+ special.predictors = list(

+ list("gdpcap", 1960:1969 , "mean"),

+ list("sec.agriculture", seq(1961, 1969, 2), "mean"),

+ list("sec.energy", seq(1961, 1969, 2), "mean"),

+ list("sec.industry", seq(1961, 1969, 2), "mean"),

+ list("sec.construction", seq(1961, 1969, 2), "mean"),

+ list("sec.services.venta", seq(1961, 1969, 2), "mean"),

+ list("sec.services.nonventa", seq(1961, 1969, 2), "mean"),

+ list("popdens", 1969, "mean")),

+ dependent = "gdpcap",

+ unit.variable = "regionno",

+ unit.names.variable = "regionname",

+ time.variable = "year",

+ treatment.identifier = 17,

+ controls.identifier = c(2:16, 18),

+ time.optimize.ssr = 1960:1969,

+ time.plot = 1955:1997)

14This refers to Z1 and Z0 accordingly.
15This argument usually refers to Y1 and Y0, the matrices that contain the outcome data for both the pre-

and post-intervention period for the treated unit and the control units. These matrices may be used to plot
and summarize results.
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Notice that some of the predictor information is given by predictors, predictors.op, and
time.predictors.prior, and the rest of the information for the other predictors is specified
in the special.predictors list. This functionality was designed to allow for easy handling of
several predictors with the same operator over the same pre-treatment period (in this case, the
school and investment variables) as well as additional custom (or“special”) predictors with het-
erogeneous operators and time-periods. For example, the variables for the sector production
shares (with the sec prefix) is only available on a biennial basis (1961,1963,...,1969) extracted
via seq(1961,1969,2). Averaging over the available years is easily accommodated using the
special.predictors list. More details and examples on the use of the special.predictors

argument are provided in the dataprep() help file.

dataprep() returns a list object dataprep.out that contains several elements, among them
dataprep.out$X0 and dataprep.out$X1, denoting X0 and X1 respectively. Both of these
objects are easily interpreted, as variable labels have been retained. For example, here is how
X1 has been stored:

R> dataprep.out$X1

17

school.illit 39.888465

school.prim 1031.742299

school.med 90.358668

school.high 25.727525

school.post.high 13.479720

invest 24.647383

special.gdpcap.1960.1969 5.285468

special.sec.agriculture.1961.1969 6.844000

special.sec.energy.1961.1969 4.106000

special.sec.industry.1961.1969 45.082000

special.sec.construction.1961.1969 6.150000

special.sec.services.venta.1961.1969 33.754000

special.sec.services.nonventa.1961.1969 4.072000

special.popdens.1969 246.889999

Notice how dataprep.out appends the associated date-range to the names of the special vari-
ables’ labels. As another example, the list object dataprep.out also contains dataprep.out$Z0
and dataprep.out$Z1, denoting Z0 and Z1 respectively. In our case, Z1 (the Basque GDP
per-capita for the pre-intervention period) has been stored as:

R> dataprep.out$Z1

17

1960 4.285918

1961 4.574336

1962 4.898957

1963 5.197015

1964 5.338903

1965 5.465153
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1966 5.545916

1967 5.614896

1968 5.852185

1969 6.081405

It may at times be useful to manipulate and modify X0 and X1 without going back to
the original dataset. To demonstrate, we work with the five different education variables
(school.illit, school.prim, school.med, school.high, school.post.high) represent-
ing the numbers, in thousands, of individuals with various levels of schooling. Abadie and
Gardeazabal (2003) consolidate the two highest variables (school.high and
school.post.high) to represent all those with more than high school education and use
the percentage share for each predictor instead of the total number of individuals. The fol-
lowing code illustrates how to consolidate these variables in both X0 and X1 and transform
the necessary values into percentage shares:

R> dataprep.out$X1["school.high",] <- dataprep.out$X1["school.high",] +

+ dataprep.out$X1["school.post.high",]

R> dataprep.out$X1 <- as.matrix(dataprep.out$X1[

+ -which(rownames(dataprep.out$X1) == "school.post.high"),])

R> dataprep.out$X0["school.high",] <- dataprep.out$X0["school.high",] +

+ dataprep.out$X0["school.post.high",]

R> dataprep.out$X0 <- dataprep.out$X0[

+ -which(rownames(dataprep.out$X0) == "school.post.high"),]

R> lowest <- which(rownames(dataprep.out$X0) == "school.illit")

R> highest <- which(rownames(dataprep.out$X0) == "school.high")

R> dataprep.out$X1[lowest:highest,] <-

+ (100 * dataprep.out$X1[lowest:highest,]) /

+ sum(dataprep.out$X1[lowest:highest,])

R> dataprep.out$X0[lowest:highest,] <-

+ 100 * scale(dataprep.out$X0[lowest:highest,], center = FALSE,

+ scale = colSums(dataprep.out$X0[lowest:highest,]))

3.2. Running synth()

The synth() command searches for the W ∗ vector of weights that identifies the synthetic con-
trol for the Basque region by solving the nested optimization problem described in equations
(1) and (2) above.

For any V synth() finds a W ∗(V ) by minimizing equation (1) using a constrained quadratic
optimization function from R’s kernlab package (Karatzoglou, Smola, Hornik, and Zeileis
2004). synth() solves for the diagonal matrix V ∗ that minimizes equation (2) and thus the
MSPE for the pre-intervention period. To solve the optimization given by equation (2) above,
we run optim() (R’s general-purpose optimization function).16

16Depending on the exact setup of the data there exist situations in which the objective function may contain
local minima, so that (as is routinely the case in these types of problems) there is no analytical guarantee that
the derivative-based algorithms routinely used by optim() (i.e., Nelder-Mead and BFGS) will converge to the
global minimum. Notice that synth() offers various safeguards against this potential problem. First, by
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As shown below, the synth() command knows how to extract its required arguments (Z1,
Z0, X1, X0) from the data.prep list output.17 No additional arguments are necessary, though
one may pass arguments to optim(), ipop(), or genoud() if desired. For example, below we
set optim() to use the BFGS quasi-Newton algorithm. After synth() finishes, the values of
V ∗’s diagonal and W ∗ are shown, as are the corresponding values of equation (2) and (1):

R> synth.out <- synth(data.prep.obj = dataprep.out, method = "BFGS")

X1, X0, Z1, Z0 all come directly from dataprep object.

****************

searching for synthetic control unit

****************

LOSS (V): 0.08864642

LOSS (W): 0.2501998

The LOSS (V) output corresponds to the loss associated with equation (2). LOSS (W) is the
loss associated with equation (1).

3.3. Obtaining Results: Tables, Figures, and Estimates

There are various ways to obtain and summarize results. synth() returns a list object that
allows the user to easily access the output from the optimization. For example, the (J × 1)
matrix of W ∗ weights is stored in synth.out$solution.w. The results from synth() can
easily be combined with the output from dataprep() to compute other quantities of interest.
For example, the annual discrepancies in the GPD trend between the Basque region and its
synthetic counterpart may be calculated by typing

R> gaps <- dataprep.out$Y1plot - (dataprep.out$Y0plot %*% synth.out$solution.w)

R> gaps[1:3, 1]

1955 1956 1957

0.15029816 0.09174669 0.03723351

default synth() always runs the optimization twice using two sets of starting values (equal V weights and
a specialized regression based method to pick V ) and returns the run that obtains lower loss. Second, the
user may choose to rely on one of non-derivative based algorithms offered by optim() (e.g., SANN). Finally,
synth() offers an additional argument called genoud(). If genoud() is set to TRUE then synth() will embark
on a two-step optimization procedure. A first optimization is conducted using the genoud() optimizer from
the rgenoud package that combines evolutionary algorithm methods with a derivative-based (quasi-Newton)
method to solve difficult optimization problems (see Mebane, Jr. and Sekhon 2011 for details). Solutions from
genoud() are then passed to optim() in the second step. This option will require more computing time, but
could be used in difficult cases if one were concerned about local minima.

17 As indicated above, instead of first running dataprep() the user could also choose to provide preprocessed
data matrices and load them into synth() via the X0, X1, Z0, and Z1 options. In this case, no data.prep.obj

should be specified. The synth() help file contains such a stand-alone example. However, in most cases it will
be more convenient for the user to first run dataprep() to properly organize the data.
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Thus the user has the flexibility to create customized summary tables and figures. To facilitate
the presentation of the results and to assess the quality of the synthetic control unit, the
Synth package also contains three convenience functions. Tables are produced by using the
synth.tab() function:

R> synth.tables <- synth.tab(dataprep.res = dataprep.out,

+ synth.res = synth.out)

This function produces four different types of tables:

R> names(synth.tables)

[1] "tab.pred" "tab.v" "tab.w" "tab.loss"

The first object (synth.tables$tab.pred) is a table comparing pre-treatment predictor val-
ues for the treated unit, the synthetic control unit, and all the units in the sample.

R> synth.tables$tab.pred[1:5, ]

Treated Synthetic Sample Mean

school.illit 3.321 7.645 10.983

school.prim 85.893 82.286 80.911

school.med 7.522 6.964 5.427

school.high 3.264 3.105 2.679

invest 24.647 21.583 21.424

We see that the synthetic Basque country is fairly similar to the real Basque country. The
sample means of the predictor variables over the 16 control regions are provided as a com-
parison. The second object is a table showing the V ∗-weight corresponding to each predictor
(not shown here). The third object shows the W ∗-weight for each potential control unit.

R> synth.tables$tab.w[8:14, ]

w-weights unit.names unit.numbers

9 0.000 Castilla-La Mancha 9

10 0.851 Cataluna 10

11 0.000 Comunidad Valenciana 11

12 0.000 Extremadura 12

13 0.000 Galicia 13

14 0.149 Madrid (Comunidad De) 14

15 0.000 Murcia (Region de) 15

We see that Cataluna contributes 85 percent and Madrid contributes 15 percent to the
synthetic Basque country; a zero weight is assigned to all the other control regions. The
path.plot() function produces Figure 1, showing the trajectories of the treated unit and
the synthetic control unit. To make a convincing case for a large treatment effect, we would
like to see the two trajectories of the outcome variable for the treated unit and its synthetic
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Figure 1: Trends in Per-Capita GDP: Basque country vs. synthetic Basque country.

control unit to be quite similar prior to the intervention and to diverge sharply when the
intervention occurs. This is what we see for the Basque country example where the terrorism
claimed its first victim in 1968, but large scale terrorist activity only began in the mid-70s.18

Notice that the path.plot() function allows the user to pass many arguments to the plot()

command to customize items like axes labels and titles.

R> path.plot(synth.res = synth.out, dataprep.res = dataprep.out,

+ Ylab = "real per-capita GDP (1986 USD, thousand)", Xlab = "year",

+ Ylim = c(0, 12), Legend = c("Basque country",

+ "synthetic Basque country"), Legend.position = "bottomright")

Instead of tracking the two trajectories over time, the gaps.plot() function produces Fig-
ure 2, showing how the difference between treated and synthetic control outcomes change over
time. Here we see that the GDP trajectory for the Basque country is very similar to that
of the synthetic Basque country for almost the entire pre-terrorism period. Once large scale
terrorist activity arises in the mid 70s, however, the GDP trajectory in the Basque country

18See Abadie and Gardeazabal (2003, Table 1) for details.
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Figure 2: Per-capita GDP Gap between Basque country and synthetic Basque country.

grows at a much lower rate than in the synthetic Basque country suggesting a large negative
effect of terrorism on Basque GDP.

R> gaps.plot(synth.res = synth.out, dataprep.res = dataprep.out,

+ Ylab = "gap in real per-capita GDP (1986 USD, thousand)", Xlab = "year",

+ Ylim = c(-1.5, 1.5), Main = NA)

3.4. Placebo Tests

One benefit of synthetic control methods is that they lend themselves to placebo tests. These
tests involve applying the synthetic control method after reassigning the intervention in the
data to units and periods where the intervention did not occur.

Abadie and Gardeazabal (2003) introduced the placebo test for the synthetic control method
by demonstrating that when the synthetic control method is applied to Catalonia, a region
similar to the Basque country in terms of the variables is X1 and X0, and path.plot()

is run, there is no identifiable treatment effect. As shown in Figure 3, the outcome tra-
jectories for Catalonia and its synthetic version are very similar. To produce Figure 3,
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Figure 3: Placebo Study: Trends in Per-Capita GDP: Catalonia vs. synthetic Catalonia.

one must re-run dataprep(), this time setting the treatment.identifier to 10 and the
controls.identifier to c(2:9,11:16,18), since Catalonia is region number 10 in the
dataset.19

This test is only one of several different types of placebo tests that users can run with this
package. For example, one can run placebos-in-time, by using dataprep() to assign a treat-
ment before the true treatment occurred and checking to ensure that the trajectories of the
synthetic control and the treated unit follow the same path beyond that arbitrary point in
time. One may also wish to run placebos with outcome variables that should be unaffected
by the treatment.

As described in Section II above, one can perform exact inferential techniques akin to permu-
tation tests by applying the synthetic control method to every control unit in the sample and
collecting information on the gaps associated with each iteration. Then, as in Abadie et al.
(2010), the user can plot these gaps and visually determine whether the line associated with
the true synthetic control unit (e.g., the synthetic Basque region) conspicuously differentiates
itself from the rest with small gaps prior to treatment and large gaps afterward. The approach

19The Basque country is excluded from the pools of controls.
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Figure 4: Permutation Test: Per-Capita GDP Gaps in the Basque country and 12 Control Regions
(Discards Regions with Pre-Terrorism MSPEs More than Five Times Higher than the MSPE for the
Basque country).

is easily implemented by running a for loop to implement placebo tests across all control units
in the sample and collecting information on the gaps. Figure 4 shows the results obtained
when this inferential technique is applied to our data example. As recommended in Abadie
et al. (2010) we exclude regions with a poor fit for the pre-treatment period (i.e., regions
with a MSPE that is five time higher than for the Basque country). Placebo studies for these
regions do not provide information to measure the relative rarity of the post-treatment gap
obtained for the Basque country which was well-fitted prior to treatment.20 The resulting
figure demonstrates that when we reassign exposure to terrorism to other regions there is a
very low probability of obtaining a gap as large as the one obtained for the Basque region.

20Notice that the poor-fitting regions are the ones that are very unusual in their pre-treatment characteristics
(for example the Balearic Islands or Madrid) so no combination of other regions in the sample can reproduce
the pre-treatment trends for these regions. As explained in Abadie et al. (2010), one alternative to excluding
regions based on MPSE is to compute the distribution of the ratio of post- to pre-treatment MPSE.
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4. Conclusion

We have described synthetic control methods and the way they may be implemented to es-
timate causal effects and perform exact inferential techniques using the Synth package for
R. Several extensions to Synth are currently under active development. We are testing a
regression-based method for populating the entire V matrix (not just the diagonal) and a
version of Synth that selects the W weights that best fit multiple outcome variables simulta-
neously. We are also working on a version that accommodates multiple treatments phased-in
over time.
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