Our research explores various aspects of conjoint experiments, including methods to analyze conjoint data and studies examining different facets of conjoint design.
Introduction to Conjoint
In Bansak et al. (2021), we provide an accessible introduction to the design and analysis of conjoint experiments.
Average Marginal Component Effects (AMCEs)
Average Marginal Component Effects (AMCEs) allow researchers to non-parametrically identify and estimate the effects of profile attributes on outcomes (e.g., respondent rankings or ratings). The method is based on the approaches developed in Hainmueller, Hopkins, and Yamamoto (2014). Researchers can implement these methods using the scripts linked below or the cjoint package in R.
In Bansak et al. (2023), we demonstrate how AMCEs can be applied to analyze electoral conjoints specifically.
Our research also examines various aspects of conjoint design. We have also developed the Conjoint Survey Design Tool to enable researchers to implement conjoint surveys in Qualtrics.
@incollection{Bansak_Hainmueller_Hopkins_Yamamoto_2021,place={Cambridge},title={Conjoint Survey Experiments},booktitle={Advances in Experimental Political Science},publisher={Cambridge University Press},author={Bansak, Kirk and Hainmueller, Jens and Hopkins, Daniel J. and Yamamoto, Teppei},editor={Druckman, James N. and Green, Donald P.Editors},year={2021},pages={19–41},}
Journal Articles
Political Analysis
Causal inference in conjoint analysis: Understanding multidimensional choices via stated preference experiments
Jens Hainmueller, Daniel J Hopkins, and Teppei Yamamoto
Miller Prize for best work appearing in Political Analysis the preceding year (https://polmeth.org/miller-prize).
@article{hainmueller2014causal,title={Causal inference in conjoint analysis: Understanding multidimensional choices via stated preference experiments},author={Hainmueller, Jens and Hopkins, Daniel J and Yamamoto, Teppei},journal={Political Analysis},volume={22},number={1},pages={1--30},year={2014},publisher={Cambridge University Press},doi={10.1093/pan/mpt024 },url={https://doi.org/10.1093/pan/mpt024 },}
Political Analysis
Using conjoint experiments to analyze election outcomes: The essential role of the average marginal component effect
Kirk Bansak, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto
@article{bansak2023using,title={Using conjoint experiments to analyze election outcomes: The essential role of the average marginal component effect},author={Bansak, Kirk and Hainmueller, Jens and Hopkins, Daniel J. and Yamamoto, Teppei},journal={Political Analysis},volume={31},number={4},pages={500--518},year={2023},publisher={Cambridge University Press},doi={10.1017/pan.2023.19},url={https://doi.org/10.1017/pan.2023.19},}
PNAS
Validating vignette and conjoint survey experiments against real-world behavior
Jens Hainmueller, Dominik Hangartner, and Teppei Yamamoto
Proceedings of the National Academy of Sciences, 2015
@article{hainmueller2015validating,title={Validating vignette and conjoint survey experiments against real-world behavior},author={Hainmueller, Jens and Hangartner, Dominik and Yamamoto, Teppei},journal={Proceedings of the National Academy of Sciences},volume={112},number={8},pages={2395--2400},year={2015},publisher={National Acad Sciences},doi={ 10.1073/pnas.141658711 },url={ https://doi.org/10.1073/pnas.141658711},}
Political Analysis
Using eye-tracking to understand decision-making in conjoint experiments
Lucas Jenke, Kirk Bansak, Jens Hainmueller, and Dominik Hangartner
@article{jenke2021eyetracking,title={Using eye-tracking to understand decision-making in conjoint experiments},author={Jenke, Lucas and Bansak, Kirk and Hainmueller, Jens and Hangartner, Dominik},journal={Political Analysis},volume={29},number={1},pages={75--101},year={2021},publisher={Cambridge University Press},doi={10.1017/pan.2020.14},url={https://doi.org/10.1017/pan.2020.14},}
PSRM
Beyond the breaking point? Survey satisficing in conjoint experiments
Kirk Bansak, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto
@article{bansak2021beyond,title={Beyond the breaking point? Survey satisficing in conjoint experiments},author={Bansak, Kirk and Hainmueller, Jens and Hopkins, Daniel J. and Yamamoto, Teppei},journal={Political Science Research and Methods},volume={9},number={1},pages={53--71},year={2021},publisher={Cambridge University Press},doi={10.1017/psrm.2019.57},url={https://doi.org/10.1017/psrm.2019.57},}
Political Analysis
The number of choice tasks and survey satisficing in conjoint experiments
Kirk Bansak, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto
@article{bansak2018number,title={The number of choice tasks and survey satisficing in conjoint experiments},author={Bansak, Kirk and Hainmueller, Jens and Hopkins, Daniel J. and Yamamoto, Teppei},journal={Political Analysis},volume={26},number={1},pages={112--119},year={2018},doi={10.1017/pan.2017.32},url={https://doi.org/10.1017/pan.2017.32},}