Conjoint Experiments

Research on Conjoint Experiments

Our research explores various aspects of conjoint experiments, including methods to analyze conjoint data and studies examining different facets of conjoint design.

Introduction to Conjoint

In Bansak et al. (2021), we provide an accessible introduction to the design and analysis of conjoint experiments.

Average Marginal Component Effects (AMCEs)

Average Marginal Component Effects (AMCEs) allow researchers to non-parametrically identify and estimate the effects of profile attributes on outcomes (e.g., respondent rankings or ratings). The method is based on the approaches developed in Hainmueller, Hopkins, and Yamamoto (2014). Researchers can implement these methods using the scripts linked below or the cjoint package in R.

In Bansak et al. (2023), we demonstrate how AMCEs can be applied to analyze electoral conjoints specifically.

Resources:

Conjoint Design

Our research also examines various aspects of conjoint design. We have also developed the Conjoint Survey Design Tool to enable researchers to implement conjoint surveys in Qualtrics.

Conjoint Survey Design Tool

Key Areas of Study:

References

Book Chapters

  1. Book Chapter
    Conjoint Survey Experiments
    Kirk Bansak, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto
    In Advances in Experimental Political Science, 2021

Journal Articles

  1. Political Analysis
    Causal inference in conjoint analysis: Understanding multidimensional choices via stated preference experiments
    Jens Hainmueller, Daniel J Hopkins, and Teppei Yamamoto
    Political Analysis, 2014
  2. Political Analysis
    Using conjoint experiments to analyze election outcomes: The essential role of the average marginal component effect
    Kirk Bansak, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto
    Political Analysis, 2023
  3. PNAS
    Validating vignette and conjoint survey experiments against real-world behavior
    Jens Hainmueller, Dominik Hangartner, and Teppei Yamamoto
    Proceedings of the National Academy of Sciences, 2015
  4. Political Analysis
    Using eye-tracking to understand decision-making in conjoint experiments
    Lucas Jenke, Kirk Bansak, Jens Hainmueller, and Dominik Hangartner
    Political Analysis, 2021
  5. PSRM
    Beyond the breaking point? Survey satisficing in conjoint experiments
    Kirk Bansak, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto
    Political Science Research and Methods, 2021
  6. Political Analysis
    The number of choice tasks and survey satisficing in conjoint experiments
    Kirk Bansak, Jens Hainmueller, Daniel J. Hopkins, and Teppei Yamamoto
    Political Analysis, 2018